Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism.

Identifieur interne : 000801 ( Main/Exploration ); précédent : 000800; suivant : 000802

The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism.

Auteurs : Roland Lill [Allemagne] ; Bastian Hoffmann ; Sabine Molik ; Antonio J. Pierik ; Nicole Rietzschel ; Oliver Stehling ; Marta A. Uzarska ; Holger Webert ; Claudia Wilbrecht ; Ulrich Mühlenhoff

Source :

RBID : pubmed:22609301

Descripteurs français

English descriptors

Abstract

Mitochondria play a key role in iron metabolism in that they synthesize heme, assemble iron-sulfur (Fe/S) proteins, and participate in cellular iron regulation. Here, we review the latter two topics and their intimate connection. The mitochondrial Fe/S cluster (ISC) assembly machinery consists of 17 proteins that operate in three major steps of the maturation process. First, the cysteine desulfurase complex Nfs1-Isd11 as the sulfur donor cooperates with ferredoxin-ferredoxin reductase acting as an electron transfer chain, and frataxin to synthesize an [2Fe-2S] cluster on the scaffold protein Isu1. Second, the cluster is released from Isu1 and transferred toward apoproteins with the help of a dedicated Hsp70 chaperone system and the glutaredoxin Grx5. Finally, various specialized ISC components assist in the generation of [4Fe-4S] clusters and cluster insertion into specific target apoproteins. Functional defects of the core ISC assembly machinery are signaled to cytosolic or nuclear iron regulatory systems resulting in increased cellular iron acquisition and mitochondrial iron accumulation. In fungi, regulation is achieved by iron-responsive transcription factors controlling the expression of genes involved in iron uptake and intracellular distribution. They are assisted by cytosolic multidomain glutaredoxins which use a bound Fe/S cluster as iron sensor and additionally perform an essential role in intracellular iron delivery to target metalloproteins. In mammalian cells, the iron regulatory proteins IRP1, an Fe/S protein, and IRP2 act in a post-transcriptional fashion to adjust the cellular needs for iron. Thus, Fe/S protein biogenesis and cellular iron metabolism are tightly linked to coordinate iron supply and utilization. This article is part of a Special Issue entitled: Cell Biology of Metals.

DOI: 10.1016/j.bbamcr.2012.05.009
PubMed: 22609301


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism.</title>
<author>
<name sortKey="Lill, Roland" sort="Lill, Roland" uniqKey="Lill R" first="Roland" last="Lill">Roland Lill</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Str. 6, 35033 Marburg, Germany. Lill@staff.uni-marburg.de</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Str. 6, 35033 Marburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Giessen</region>
<settlement type="city">Marbourg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hoffmann, Bastian" sort="Hoffmann, Bastian" uniqKey="Hoffmann B" first="Bastian" last="Hoffmann">Bastian Hoffmann</name>
</author>
<author>
<name sortKey="Molik, Sabine" sort="Molik, Sabine" uniqKey="Molik S" first="Sabine" last="Molik">Sabine Molik</name>
</author>
<author>
<name sortKey="Pierik, Antonio J" sort="Pierik, Antonio J" uniqKey="Pierik A" first="Antonio J" last="Pierik">Antonio J. Pierik</name>
</author>
<author>
<name sortKey="Rietzschel, Nicole" sort="Rietzschel, Nicole" uniqKey="Rietzschel N" first="Nicole" last="Rietzschel">Nicole Rietzschel</name>
</author>
<author>
<name sortKey="Stehling, Oliver" sort="Stehling, Oliver" uniqKey="Stehling O" first="Oliver" last="Stehling">Oliver Stehling</name>
</author>
<author>
<name sortKey="Uzarska, Marta A" sort="Uzarska, Marta A" uniqKey="Uzarska M" first="Marta A" last="Uzarska">Marta A. Uzarska</name>
</author>
<author>
<name sortKey="Webert, Holger" sort="Webert, Holger" uniqKey="Webert H" first="Holger" last="Webert">Holger Webert</name>
</author>
<author>
<name sortKey="Wilbrecht, Claudia" sort="Wilbrecht, Claudia" uniqKey="Wilbrecht C" first="Claudia" last="Wilbrecht">Claudia Wilbrecht</name>
</author>
<author>
<name sortKey="Muhlenhoff, Ulrich" sort="Muhlenhoff, Ulrich" uniqKey="Muhlenhoff U" first="Ulrich" last="Mühlenhoff">Ulrich Mühlenhoff</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22609301</idno>
<idno type="pmid">22609301</idno>
<idno type="doi">10.1016/j.bbamcr.2012.05.009</idno>
<idno type="wicri:Area/Main/Corpus">000839</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000839</idno>
<idno type="wicri:Area/Main/Curation">000839</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000839</idno>
<idno type="wicri:Area/Main/Exploration">000839</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism.</title>
<author>
<name sortKey="Lill, Roland" sort="Lill, Roland" uniqKey="Lill R" first="Roland" last="Lill">Roland Lill</name>
<affiliation wicri:level="3">
<nlm:affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Str. 6, 35033 Marburg, Germany. Lill@staff.uni-marburg.de</nlm:affiliation>
<country xml:lang="fr">Allemagne</country>
<wicri:regionArea>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Str. 6, 35033 Marburg</wicri:regionArea>
<placeName>
<region type="land" nuts="1">Hesse (Land)</region>
<region type="district" nuts="2">District de Giessen</region>
<settlement type="city">Marbourg</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Hoffmann, Bastian" sort="Hoffmann, Bastian" uniqKey="Hoffmann B" first="Bastian" last="Hoffmann">Bastian Hoffmann</name>
</author>
<author>
<name sortKey="Molik, Sabine" sort="Molik, Sabine" uniqKey="Molik S" first="Sabine" last="Molik">Sabine Molik</name>
</author>
<author>
<name sortKey="Pierik, Antonio J" sort="Pierik, Antonio J" uniqKey="Pierik A" first="Antonio J" last="Pierik">Antonio J. Pierik</name>
</author>
<author>
<name sortKey="Rietzschel, Nicole" sort="Rietzschel, Nicole" uniqKey="Rietzschel N" first="Nicole" last="Rietzschel">Nicole Rietzschel</name>
</author>
<author>
<name sortKey="Stehling, Oliver" sort="Stehling, Oliver" uniqKey="Stehling O" first="Oliver" last="Stehling">Oliver Stehling</name>
</author>
<author>
<name sortKey="Uzarska, Marta A" sort="Uzarska, Marta A" uniqKey="Uzarska M" first="Marta A" last="Uzarska">Marta A. Uzarska</name>
</author>
<author>
<name sortKey="Webert, Holger" sort="Webert, Holger" uniqKey="Webert H" first="Holger" last="Webert">Holger Webert</name>
</author>
<author>
<name sortKey="Wilbrecht, Claudia" sort="Wilbrecht, Claudia" uniqKey="Wilbrecht C" first="Claudia" last="Wilbrecht">Claudia Wilbrecht</name>
</author>
<author>
<name sortKey="Muhlenhoff, Ulrich" sort="Muhlenhoff, Ulrich" uniqKey="Muhlenhoff U" first="Ulrich" last="Mühlenhoff">Ulrich Mühlenhoff</name>
</author>
</analytic>
<series>
<title level="j">Biochimica et biophysica acta</title>
<idno type="ISSN">0006-3002</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Fungi (metabolism)</term>
<term>Gene Expression Regulation (MeSH)</term>
<term>Heme (biosynthesis)</term>
<term>Homeostasis (physiology)</term>
<term>Humans (MeSH)</term>
<term>Ion Transport (physiology)</term>
<term>Iron (deficiency)</term>
<term>Iron (metabolism)</term>
<term>Iron-Binding Proteins (genetics)</term>
<term>Iron-Binding Proteins (metabolism)</term>
<term>Iron-Sulfur Proteins (genetics)</term>
<term>Iron-Sulfur Proteins (metabolism)</term>
<term>Mitochondria (metabolism)</term>
<term>Mitochondrial Proteins (genetics)</term>
<term>Mitochondrial Proteins (metabolism)</term>
<term>Molecular Chaperones (genetics)</term>
<term>Molecular Chaperones (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Champignons (métabolisme)</term>
<term>Chaperons moléculaires (génétique)</term>
<term>Chaperons moléculaires (métabolisme)</term>
<term>Fer (déficit)</term>
<term>Fer (métabolisme)</term>
<term>Ferrosulfoprotéines (génétique)</term>
<term>Ferrosulfoprotéines (métabolisme)</term>
<term>Homéostasie (physiologie)</term>
<term>Humains (MeSH)</term>
<term>Hème (biosynthèse)</term>
<term>Mitochondries (métabolisme)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines de liaison au fer (génétique)</term>
<term>Protéines de liaison au fer (métabolisme)</term>
<term>Protéines mitochondriales (génétique)</term>
<term>Protéines mitochondriales (métabolisme)</term>
<term>Régulation de l'expression des gènes (MeSH)</term>
<term>Transport des ions (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Heme</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="deficiency" xml:lang="en">
<term>Iron</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Iron-Binding Proteins</term>
<term>Iron-Sulfur Proteins</term>
<term>Mitochondrial Proteins</term>
<term>Molecular Chaperones</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Hème</term>
</keywords>
<keywords scheme="MESH" qualifier="déficit" xml:lang="fr">
<term>Fer</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Chaperons moléculaires</term>
<term>Ferrosulfoprotéines</term>
<term>Protéines de liaison au fer</term>
<term>Protéines mitochondriales</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Fungi</term>
<term>Iron</term>
<term>Iron-Binding Proteins</term>
<term>Iron-Sulfur Proteins</term>
<term>Mitochondria</term>
<term>Mitochondrial Proteins</term>
<term>Molecular Chaperones</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Champignons</term>
<term>Chaperons moléculaires</term>
<term>Fer</term>
<term>Ferrosulfoprotéines</term>
<term>Mitochondries</term>
<term>Protéines de liaison au fer</term>
<term>Protéines mitochondriales</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Homéostasie</term>
<term>Transport des ions</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Homeostasis</term>
<term>Ion Transport</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Gene Expression Regulation</term>
<term>Humans</term>
<term>Oxidation-Reduction</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Humains</term>
<term>Oxydoréduction</term>
<term>Régulation de l'expression des gènes</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Mitochondria play a key role in iron metabolism in that they synthesize heme, assemble iron-sulfur (Fe/S) proteins, and participate in cellular iron regulation. Here, we review the latter two topics and their intimate connection. The mitochondrial Fe/S cluster (ISC) assembly machinery consists of 17 proteins that operate in three major steps of the maturation process. First, the cysteine desulfurase complex Nfs1-Isd11 as the sulfur donor cooperates with ferredoxin-ferredoxin reductase acting as an electron transfer chain, and frataxin to synthesize an [2Fe-2S] cluster on the scaffold protein Isu1. Second, the cluster is released from Isu1 and transferred toward apoproteins with the help of a dedicated Hsp70 chaperone system and the glutaredoxin Grx5. Finally, various specialized ISC components assist in the generation of [4Fe-4S] clusters and cluster insertion into specific target apoproteins. Functional defects of the core ISC assembly machinery are signaled to cytosolic or nuclear iron regulatory systems resulting in increased cellular iron acquisition and mitochondrial iron accumulation. In fungi, regulation is achieved by iron-responsive transcription factors controlling the expression of genes involved in iron uptake and intracellular distribution. They are assisted by cytosolic multidomain glutaredoxins which use a bound Fe/S cluster as iron sensor and additionally perform an essential role in intracellular iron delivery to target metalloproteins. In mammalian cells, the iron regulatory proteins IRP1, an Fe/S protein, and IRP2 act in a post-transcriptional fashion to adjust the cellular needs for iron. Thus, Fe/S protein biogenesis and cellular iron metabolism are tightly linked to coordinate iron supply and utilization. This article is part of a Special Issue entitled: Cell Biology of Metals.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22609301</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>09</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2016</Year>
<Month>11</Month>
<Day>26</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Print">0006-3002</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>1823</Volume>
<Issue>9</Issue>
<PubDate>
<Year>2012</Year>
<Month>Sep</Month>
</PubDate>
</JournalIssue>
<Title>Biochimica et biophysica acta</Title>
<ISOAbbreviation>Biochim Biophys Acta</ISOAbbreviation>
</Journal>
<ArticleTitle>The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism.</ArticleTitle>
<Pagination>
<MedlinePgn>1491-508</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.bbamcr.2012.05.009</ELocationID>
<Abstract>
<AbstractText>Mitochondria play a key role in iron metabolism in that they synthesize heme, assemble iron-sulfur (Fe/S) proteins, and participate in cellular iron regulation. Here, we review the latter two topics and their intimate connection. The mitochondrial Fe/S cluster (ISC) assembly machinery consists of 17 proteins that operate in three major steps of the maturation process. First, the cysteine desulfurase complex Nfs1-Isd11 as the sulfur donor cooperates with ferredoxin-ferredoxin reductase acting as an electron transfer chain, and frataxin to synthesize an [2Fe-2S] cluster on the scaffold protein Isu1. Second, the cluster is released from Isu1 and transferred toward apoproteins with the help of a dedicated Hsp70 chaperone system and the glutaredoxin Grx5. Finally, various specialized ISC components assist in the generation of [4Fe-4S] clusters and cluster insertion into specific target apoproteins. Functional defects of the core ISC assembly machinery are signaled to cytosolic or nuclear iron regulatory systems resulting in increased cellular iron acquisition and mitochondrial iron accumulation. In fungi, regulation is achieved by iron-responsive transcription factors controlling the expression of genes involved in iron uptake and intracellular distribution. They are assisted by cytosolic multidomain glutaredoxins which use a bound Fe/S cluster as iron sensor and additionally perform an essential role in intracellular iron delivery to target metalloproteins. In mammalian cells, the iron regulatory proteins IRP1, an Fe/S protein, and IRP2 act in a post-transcriptional fashion to adjust the cellular needs for iron. Thus, Fe/S protein biogenesis and cellular iron metabolism are tightly linked to coordinate iron supply and utilization. This article is part of a Special Issue entitled: Cell Biology of Metals.</AbstractText>
<CopyrightInformation>Copyright © 2012 Elsevier B.V. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Lill</LastName>
<ForeName>Roland</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Institut für Zytobiologie und Zytopathologie, Philipps-Universität Marburg, Robert-Koch Str. 6, 35033 Marburg, Germany. Lill@staff.uni-marburg.de</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hoffmann</LastName>
<ForeName>Bastian</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Molik</LastName>
<ForeName>Sabine</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Pierik</LastName>
<ForeName>Antonio J</ForeName>
<Initials>AJ</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Rietzschel</LastName>
<ForeName>Nicole</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stehling</LastName>
<ForeName>Oliver</ForeName>
<Initials>O</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Uzarska</LastName>
<ForeName>Marta A</ForeName>
<Initials>MA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Webert</LastName>
<ForeName>Holger</ForeName>
<Initials>H</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Wilbrecht</LastName>
<ForeName>Claudia</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Mühlenhoff</LastName>
<ForeName>Ulrich</ForeName>
<Initials>U</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D016454">Review</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>05</Month>
<Day>15</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Biochim Biophys Acta</MedlineTA>
<NlmUniqueID>0217513</NlmUniqueID>
<ISSNLinking>0006-3002</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D033862">Iron-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007506">Iron-Sulfur Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D024101">Mitochondrial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018832">Molecular Chaperones</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C098527">frataxin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>42VZT0U6YR</RegistryNumber>
<NameOfSubstance UI="D006418">Heme</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>E1UOL152H7</RegistryNumber>
<NameOfSubstance UI="D007501">Iron</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005658" MajorTopicYN="N">Fungi</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005786" MajorTopicYN="N">Gene Expression Regulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006418" MajorTopicYN="N">Heme</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006706" MajorTopicYN="N">Homeostasis</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017136" MajorTopicYN="N">Ion Transport</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="N">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007501" MajorTopicYN="N">Iron</DescriptorName>
<QualifierName UI="Q000172" MajorTopicYN="N">deficiency</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D033862" MajorTopicYN="N">Iron-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007506" MajorTopicYN="N">Iron-Sulfur Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008928" MajorTopicYN="N">Mitochondria</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D024101" MajorTopicYN="N">Mitochondrial Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018832" MajorTopicYN="N">Molecular Chaperones</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2012</Year>
<Month>03</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2012</Year>
<Month>05</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>05</Month>
<Day>09</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>5</Month>
<Day>22</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>5</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>9</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22609301</ArticleId>
<ArticleId IdType="pii">S0167-4889(12)00125-5</ArticleId>
<ArticleId IdType="doi">10.1016/j.bbamcr.2012.05.009</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Allemagne</li>
</country>
<region>
<li>District de Giessen</li>
<li>Hesse (Land)</li>
</region>
<settlement>
<li>Marbourg</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Hoffmann, Bastian" sort="Hoffmann, Bastian" uniqKey="Hoffmann B" first="Bastian" last="Hoffmann">Bastian Hoffmann</name>
<name sortKey="Molik, Sabine" sort="Molik, Sabine" uniqKey="Molik S" first="Sabine" last="Molik">Sabine Molik</name>
<name sortKey="Muhlenhoff, Ulrich" sort="Muhlenhoff, Ulrich" uniqKey="Muhlenhoff U" first="Ulrich" last="Mühlenhoff">Ulrich Mühlenhoff</name>
<name sortKey="Pierik, Antonio J" sort="Pierik, Antonio J" uniqKey="Pierik A" first="Antonio J" last="Pierik">Antonio J. Pierik</name>
<name sortKey="Rietzschel, Nicole" sort="Rietzschel, Nicole" uniqKey="Rietzschel N" first="Nicole" last="Rietzschel">Nicole Rietzschel</name>
<name sortKey="Stehling, Oliver" sort="Stehling, Oliver" uniqKey="Stehling O" first="Oliver" last="Stehling">Oliver Stehling</name>
<name sortKey="Uzarska, Marta A" sort="Uzarska, Marta A" uniqKey="Uzarska M" first="Marta A" last="Uzarska">Marta A. Uzarska</name>
<name sortKey="Webert, Holger" sort="Webert, Holger" uniqKey="Webert H" first="Holger" last="Webert">Holger Webert</name>
<name sortKey="Wilbrecht, Claudia" sort="Wilbrecht, Claudia" uniqKey="Wilbrecht C" first="Claudia" last="Wilbrecht">Claudia Wilbrecht</name>
</noCountry>
<country name="Allemagne">
<region name="Hesse (Land)">
<name sortKey="Lill, Roland" sort="Lill, Roland" uniqKey="Lill R" first="Roland" last="Lill">Roland Lill</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000801 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000801 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22609301
   |texte=   The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22609301" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020